Here is a sketch of the graphs of $y = k^x$ and $y = x^2 + c$ k and c are positive constants.

Work out the value of r.

[4 marks]

When
$$x=2$$
, $y=3^2=9$ (p=9)

$$c = 5$$
 $y = \chi^2 + 5$

when y = 43.44 , 43.44 = 22+5 (1)

$$r =$$
 6.2

2 Here is a sketch of $y = x^2$

2 (a) The minimum point of $y = x^2$ is at (0, 0)

Write down the coordinates of the minimum point of $y = x^2 + 2$

[1 mark]

2 (b) The graph $y = x^2$ is reflected in the x axis.

Write down the equation of the graph after this transformation.

[1 mark]

Answer
$$y = -x^{2}$$

2 (c) $y = x^2$ is now transformed to give $y = (x + 3)^2$

Describe fully this single transformation.

[2 marks]

Complete the table of values for $y = x^2 + 2x$ 3 (a)

$$y = x^2 + 2x$$

[2 marks]

x	-3	-2	-1	0	1
у	3	0	-1	0	3

Draw the graph of 3 (b)

$$y = x^2 + 2x$$

for values of x from -3 to 1

[2 marks]

4 A graph has the equation $y = x^2 + px + r$ where p and r are constants.

The graph passes through the points (0, 4), (1, 3) and (8, w)

Work out the value of w.

[4 marks]

point
$$(1,3) = 3 = (1)^2 + P(1) + 4$$

- **5** A graph passes through the points (3, 15) and (7, w)
- 5 (a) Assume that the equation of the graph has the form $y = x^2 + c$

Work out the value of w that this would give.

[3 marks]

$$C = 15 - 9 = 6$$

5 (b) In fact, the graph is a straight line.

What does this mean about the actual value of w?

Tick one box.

[1 mark]

It must be the same as the value in part (a)

It must be different to the value in part (a)

It is impossible to tell

6 Here is a quadratic graph with equation y = f(x)

Write down the roots of the equation f(x) = 0

[2 marks]